

RF-LIGHTWAVE INTEGRATED CIRCUITS PROGRAM KICKOFF MEETING, 16 AUGUST 2000

AGILE WAVEFORM GENERATION & FREQUENCY CONVERSION

HRL LABORATORIES 3011 MALIBU CANYON ROAD MALIBU, CA 90265

Points of Contact: Daniel Yap,

(Tel) 310-317-5360, (Email) dyap@hrl.com

Willie Ng,

(Tel) 310-317-5704, (Email) wwng@hrl.com

RF-LIGHTWAVE TECHNOLOGY FOR MILITARY SYSTEMS

- HRL and its owners are leaders in the innovation of RF, lightwave and combined RF-lightwave technologies for military systems.
- HRL has the potential for early-to-system incorporation of advances in RF-lightwave technology.

TECHNOLOGY DEVELOPMENT APPROACH

@ 2000 HRL Laboratories, LLC. All Rights Reserved

DY-3

TECHNICAL OBJECTIVES AND APPLICATIONS

BENEFITS & APPLICATIONS

- Reduced Probability of Interception
- Reduced Interference in RF Communication Networks
- Stealth Platforms
- Cooperative Multi-Platform Sensors
- Rapid Frequency Translation
- Efficient Re-use of Waveform Synthesizers and Processors
- Large Multi-band Frequency Coverage
- Integrated Sensor Systems
- Frequency Agile Front Ends
- Multi-band Communications
- Ultra-Wideband Sensors

PHOTONIC TECHNOLOGY IN MULTI-BAND RF SENSOR MANIFOLDS

- Optical Fiber Networks Can Distribute Combination of µWave, mmWave, UHF, LO, Digital Signals
- Photonic Technology Enables a Complete Redesign of the RF Sensor Front-End Accompanied by Improvements in Bandwidth and Frequency Agility Plus Reduction of Size/Weight

CONVERSION EFFICIENCY ACHIEVED WITH PHOTONIC LO GENERATION AND FREQUENCY CONVERSION

 Frequency Conversion Loss of - 6.2 dB was Achieved When Lasers were Set for M = 0.97 if Photonic Link Gain is 0 dB

ORGANIZATION AND POINTS OF CONTACT

RF-LIGHTWAVE INTEGRATION TECHNOLOGIES ENSEMBLE (RF-LITE)

ROLE OF HRL & RAYTHEON:

- Provide military-systems application focus for component development
- Generate system derived RF-lightwave link specifications
- Provide showcase for RFLICS components by means of a system-focused demonstration event

ROLE OF COMPONENT-DEVELOPMENT TEAMS:

- Provide (on a non-exclusive, voluntary basis) components to be inserted into demonstration
- Provide input on component capabilities for RFLICS technology insertion

ENSEMBLE MEMBERS	RELEVANT COMPONENTS
Photonic Systems (C. Cox, R. Ram, J. Abeles, R. Osgood)	Wideband, Low-Voltage Modulator High Slope Efficiency Laser
Sarnoff (J. Abeles)	Low-Voltage Modulator
UCSB (J. Bowers, L. Coldren)	High-Efficiency and Linearity Laser Wideband Modulator High-Sensitivity Photoreceiver
• USC (D. Dapkus)	Low-Voltage Modulator

DEMONSTRATION OF AGILE WAVEFORM GENERATION AND FREQUENCY CONVERSION

- Agile Frequency Translation To Various RF Tx/Rx Bands
- Compare With Photonic Links Modulated At RF Carrier Frequency
- Agile Frequency Spreading of RF Signal Within a Band
- Compare With Single-Tone RF Carriers For Tx/Rx

Most of the RFLICS component types could be incorporated into this system-focused demonstration.

MAJOR PROJECT TASKS AND SCHEDULE

